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Abstract. In this paper we have analysed a multiphase evolution of population growth. 
Individual birth and immigration are assumed to be the consequence of the evolution of 
an individual through a sequence of phases whose duration form a family of independent 
non-negative random variables. The population model is then adapted to describe the 
evolution of photons in a cavity and, in particular, it is shown that a multiphase immigration 
model corresponds to the photons resulting from a stream obtained by amplitude mixing 
of coherent and chaotic beams. The model is also shown to bring out the characteristics 
of the multiplicity distribution of particles produced in high-energy collisions. 

1. Introduction 

The object of this paper is to analyse an age-dependent model of population growth 
with special reference to the population point process models of cavity radiation. The 
motivation for the analysis is twofold. The first is to bring out the spectral properties 
of the radiation field generated by the population of photons. The second is to arrive 
at the scaled distribution of hadron multiplicities in a typical colliding-beam experi- 
ment. Since it is generally believed that the negative binomial or branching model 
provides an adequate description of hadron multiplicity distribution, it is hoped that 
the analysis of multiphase population evolution will bring out the characteristics of 
the multiplicity distribution that can be checked directly by further analysis of the data 
from collider-beam experiments. 

The layout of the paper is as follows. In section 2 we analyse a realistic model of 
population growth in which the birth rates are not constant. More specifically, we 
assume that the members of the population evolve through a certain number of phases 
of random duration before birth/fission takes place. In addition, it is also assumed 
that the death rate is a constant in each of the phases. We superimpose on this process 
a process of immigration which is not necessarily Markov. Throughout it is assumed 
that there is a constant rate at which the members of the population emigrate. In 
section 3 we characterise the point process of emigration from such a population in 
terms of the product densities. Such an approach is useful since the emigration process 
can be interpreted to be the detection process that is employed to detect the radiation 
field. In section 4 we discuss the relevance of this model to the population point 
process description of cavity radiation and its detection. In section 5 we show how 
this model can be adapted to describe the multiplicity distribution of particles (hadrons) 
produced in a typical colliding-beam experiment. 
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2. Description of the phase-dependent model of population growth 

The stochastic evolution of population has been investigated in the past from many 
points of view and, in particular, age-dependent population growth has been studied 
with a view to taking into account the variable nature of birth rate during the life 
history of an individual member (see, for example, Kendall 1949, Harris 1963, Bartlett 
1975). In the Kendall model of population growth it is generally assumed that an 
individual of age x at time t has a probability A ( x )  dr of giving birth to another 
individual in the time interval ( t ,  t + d t )  conditional upon its having survived up to 
time t .  However, if the birth rate A ( x )  is assumed to be of the form 

(Ax)" A (x)  = e-*" - 
n !  

it is possible to interpret the lifespan as the sum of a certain number of exponentially 
distributed random variables (Srinivasan 1988a). Such an interpretation renders the 
analysis amenable to easy computation of the different statistical characteristics of the 
population. We use this approach to model a population subject to birth, death, 
immigration and emigration. It will turn out that these characteristics are sufficient to 
model a cavity population of photons. We also adapt this model to arrive at the 
multiplicity distribution of hadrons in a typical colliding-beam experiment. 

We now proceed to describe the evolution of population through multiphases. We 
assume that each of the individuals of the population immediately on its birth goes 
through a certain number (say n) of phases before it can give birth to another individual. 
The duration of the phases are assumed to be independent and identically distributed 
random variables with a common exponential distribution with parameter A. 

Each individual can give birth to another individual in the nth phase at a rate 
equal to a per unit time. Each individual, independent of other individuals in the 
population, has a risk (of death) at a constant rate equal to p in all the phases except 
the last where the risk rate is taken to be A + p .  This particular choice of death rate 
is only to ensure the conservation of probability in the nth phase. It is to be noted 
that in the original phase model interpreted and used by Srinivasan (1986a, b) there 
is an additional residuary phase in which no births are possible. The emigration process 
is at a constant rate 77 per individual in all the phases. We assume that the marginal 
point process of the epochs of immigrations form an ordinary renewal process whose 
interval spans are sums of m positive independent random variables, each with a 
negative exponential distribution. Thus the immigration can be described with the 
help of an auxiliary discrete process which is itself a Markov chain over the discrete 
set of states {1,2, . . . , m}. The Markov chain itself undergoes transitions of the type 
i +  i +  1 with rates P I (  i = 1,2 , .  . . , m - 1). However when the Markov chain is in state 
m the next transition which occurs at a rate Pm takes the state to any of the states j 
with probability pi, the transition itself being marked by the actual materialisation of 
immigration. Technically speaking, the associated Markov chain is really a semi- 
Markov process inasmuch as the transition from m +  m is possible with rate 
P m p , ( i  = 1,2 , .  . . m). This will become apparent when we write down the equation 
governing the probability generating function. We now proceed to analyse the model 
with special reference to the point process of emigration. For convenience we choose 
m = 3 and introduce the following notation: 

X i ( t )  is the size of the population in phase i at time t ,  i = 1,2, . , . , n; 
X ( t )  is the total size of the population at time t ;  
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Y ( t )  is the state process of immigration; 

rji( t )  = p r {  Y (  t )  = iI Y(0)  = j }  

gi(z, t )  = E[zX"'IX(0) = X,(O) = 1 ,  p, = 01 

G,(z, t )  = E[zX"'/X(0) = 0, Y(0)  = i] 

i, j = 1,2, 3 

i = l , 2  , . . . ,  n ; j = l , 2 , 3  

i = l , 2 , 3  

(2.2) 

(2.3) 

(2.4) 

where E stands for the mathematical expectation of the quantity within the brackets. 
To obtain the equations satisfied by the functions gl(z, t ) ( i  = 1 ,2 , .  . . , n )  we note that 
the single individual that generates the population is in phase i initially and in the 
interval (0, A )  for i = 1,2,  . . . , n - 1 

(i)  moves to phase ( i  + 1 )  with probability A A + o(A), or 
(ii) dies or emigrates with probability ( p  + v)A+o(A), or 
(iii) continues to be in phase i with the residual probability 1 - ( A  + p + v)A+ o(A). 

Thus we have 

g, (z, t )  = A Agi+l (z, t - A )  + (I*. + 7 ) A  + [ 1 - ( A  + CL + t) )AIgi ( Z, t - A) + o(A) * (2.5) 

On the other hand, if i = n the individual is in the final phase (residual phase) and 
over the interval (0, A )  

(i) gives birth to an individual in phase 1 with probability aA+o(A), or 
(ii) dies or emigrates with probability ( A  + p + v ) A +  o(A), or 
(iii) continues to be in phase n with the residual probability 1 - ( A  + p + 77 + a ) A +  

Taking all these possibilities we have 
o(A). 

gn (z, t )  = [ 1 - ( P + a 1 AI gn (z, t - A) + ( A  + F + t7 )A 

+ (Y Agn ( z, t - A )  g, ( Z, t - A) + 0 ( A ) .  (2.6) 

Proceeding to the limit as A + 0 we have 

i = 1,2, . . . , n - 1  (2.7) 

with the initial condition 

gi(z, 0) = z i =  1 , 2 , .  . . , n (2.9) 
where p = A + p + r ] .  

To obtain the equations satisfied by Gi(z, t ) (  i = 1,2 ,3)  we fix our attention on the 
time interval (0, A )  as before. If the state of immigration is in phase 1 (phase 2), it 

( i)  moves to phase 2 (phase 3) with probability &A+o(A) (&A+o(A)), or 
(ii) continues to be in phase 1 (phase 2) with the residual probability l -p lA+ 

We have 
o(A)(l -PzA+o(A)). 

GI ( Z, t )  = ( 1  - pi A )  Gi( z, t - A)  + PiAGl+l( z, t - A)  + O( A )  i = l , 2 .  (2.10) 

On the other hand, if the state is in phase 3, immigration materialises at a rate &, the 
state of immigration itself undergoing transition to any of the states 1, 2 and 3 with 
respective probabilities p l ,  p 2  and p3(pI + p 2 + p s  = 1) .  Taking into account that the 
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immigrant is in phase 1 of its evolution and will generate population independent of 
the state of immigration we obtain 

G3( Z, t = ( 1 - P 3 A )  G3( Z, t - A )  + P3A( pi GI ( z, t - A )  

+ p2 G,( Z ,  t - A 1 + p3 G3 ( z, t - A 1 1 gi ( z, t - A 1 + 0 ( A ) .  (2.11) 

Now proceeding to the limit as A + 0 we obtain 

aGt(z’ ‘ ) =  -P,G, (z ,  t )+P,G,+l ( z ,  1 )  
at 

i = 1 , 2  

aG3(zy  ‘ ) = - P 3 G 3 ( z ,  t ) + ( v , G , ( z ,  t ) + v 2 G 2 ( z ,  t ) + v 3 G 3 ( z ,  t ) ) g l ( z ,  t ) .  
at 

(2.12) 

(2.13) 

where vi = P3pir  i = 1 , 2 , 3  with the initial condition 

G i ( z ,  0 )  = 1 i =  1,2 ,  3 .  (2.14) 

Although it is difficult to solve for G, explicitly the moments can be readily generated. 

2.1. Moments  of the population 

We introduce the moment functions ai( t ) ,  b i ( t ) ,  A j ( t )  and Bj(t)(i = 1, 2 , .  . . , n ;  j = 
1,293) by 

(2.15) 

(2.16) 

Aj( t )  = - 
az 

az 

j = 1 , 2 , 3  
(2.17) 

(2.18) 

where for simplicity of notation we denote g, (z ,  t )  by g , ( i  = 1,2,  . . . , n )  and G j ( z ,  t )  
by G j ( j  = 1 ,2 ,3 ) .  We then differentiate both sides of equations (2.12) and (2.13) to 
obtain, for j = 1,2,  

(2.19) 

d 
- A 3 ( t )  = -( v1 + v2)A3( t )+ v l A l ( t ) +  v 2 A 2 ( t ) +  ( v I  + v2+ v 3 ) a l ( t ) .  (2.20) d t  

If we again differentiate equations (2.12) and (2.13) to get, for j = 1 ,2 ,  

(2.21) 

(2.22) 
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with the initial conditions 

Aj(0) = Bj(0)  = 0 j = 1 ,2 ,  3 .  (2.23) 

Solving the above equations (2.19)-(2.22) by the Laplace transform (denoted by *) 
technique with P1 = P2 + v, + v2 and p + r) = 2(P2 + v 1  + v2)  we get 

v,+ v2)t ]  

exp[-(P2+ vl + v2)t]  sin - t 
2 

- 2(P2 + VI + v2) 
r 

r + ( v1 + v2)  exp[ - ( p 2  + v1 + v2) 11 cos - t 2 

2 
2P2 VI 

r +-exp[-(P,+ v,+ v2)t] sin- t 

where D,  = ( p2 + v1 + v2)2 + P2 vl and r = 2( P2 Y , ) " ~  and 

where 

L ( s )  = v1AT(s+2P2+2vt+2v2)  

+ v2AT(s + 2P2+2v,  +2v2) + v,A:(s +2P2+2v ,  + 2v2) 

D ( s )  = s2 + 2s(P2 + v l  + v2)  + ( P 2  + v1 + v2)' + P2v1 

ai( t )=exp[-2(p2+ v,+ v2)t]  i = 1 ,2 ,  . . . , n 

bT(0) = 
A "  

2(P2+vi+v2)(p"-An) '  

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

The factorial moments of the equilibrium distribution of the population are easily 
obtained by the use of the Tauberian theorem given by 

B,(oo) = lim sBT(s)  
S - 0  

= P 2 P 3 / 2 D 1  

where D2 = 9(P2 + v 1  + v2)2 + p 2 v 1 .  

(2.34) 
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If we introduce g, the measure of bunching, as 

%I = B l ( ~ ) / [ A l ( ~ ) 1 2  

and set n = 2, v 1  = v2 = A, vj = 11,413, p2 = 2 8 A / 3  we get 

93 = 1.8743. 

(2.35) 

The significance of the choice of v l  , v 2 ,  v3 and p2 will become apparent presently. In 
what follows we specifically use the choice n = 2. 

3. Emigration process 

We are generally interested in the number of individuals emigrated over an arbitrary 
interval ( t o ,  to+ t )  (see Shepherd 1981, Jakeman and Shepherd 1984, Shepherd and 
Jakeman 1987). There are two ways of dealing with the emigration process. The first 
consists of dealing with N ( t o ,  t ) ,  the number of individuals emigrated over the time 
interval ( t o ,  to+ t ) .  In our model the process becomes stationary and hence the 
distributional characteristics of the process N ( t o ,  t )  are independent of to .  We can 
proceed in a manner analogous to that of section 2 and obtain the differential equations 
satisfied by the appropriate generating functions. The moments of N (  t )  can be obtained 
by differentiating the resulting set of equations with respect to z at z =  1 of the 
corresponding generating functions. The structure of the differential equations is the 
same as in section 2. There is an alternative line of approach in which we can deal 
with the point process generated by the epochs of emigration. The emigration process 
can be characterised in terms of the sequence of product densities. For the model 
under discussion, these are conditional product densities and are defined by 

in i r ia l lb  

with higher-order product densities defined in a similar manner. 

Hence we have 
From the very construction of the model it is clear that the point process is stationary. 

f l (  t )  = a constant 

f 2 ( t l ,  t 2 ) = a  function of I t 2 - t l l  = h s r y ( l t 2 - t l l ) .  

(3.3) 

(3.4) 

If we confine our attention to the second-order characteristics, we need only identify 
the constant on the right-hand side of (3 .3)  and obtain an explicit expression for the 
function hsry( 1. To make further progress we introduce the conditional product 
densities by choosing convenient conditioning and then revert back to the equilibrium 
condition. 

Thus accordingly we define 

h ; (  t )  = lim pr{ N (  t + A )  - N (  t )  = 1 IX,(O) = X ( 0 )  = 1 pj = O}/A j = 1 , 2 , 3 .  (3.5) 
A-0 
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In addition, the equilibrium first-order function f l (  ) where 

is given by 

f l (  ) = 77AI(W) = 77PZP3/2DI~ (3.7) 

To obtain h : ( r )  we use the definition (3.5) directly and relate it to the moment a l ( t ) .  
Thus we obtain 

h t ( t ) = 7 7 a I ( t ) =  77 exp[-2(p2+vI+v2)t] .  (3.8) 

To obtain h,,,,( t ) (  t > 0), we note that we have the population maintained in equilibrium 
at the origin at which point of time one of the individuals has emigrated. Taking into 
account that the emigrated individual could be in any one of the phases, and any one 
of the members of the remaining population can generate a population tree between 
0 and t ,  we obtain the contribution as 

hsrv(t) l f irst  t e r m =  q 2 B , ( a )  exp[-2(p2+ V I +  v2)tI. (3.9) 

The second term arises from the situation that the emigration that occurs at the epoch 
t could be due to the population generated by an individual arising from the emigration 
subsequent to the time origin. Since in any case the emigration at the time origin has 
to be from a population due to an individual immigrating into the system before the 
time origin we concentrate our attention at the point at which the immigration effectively 
takes place. If x is the time coordinate of the epoch we note that the state of immigration 
is described by the three-state semi-Markov process introduced in section 2. We note 
that the contribution to h S r , ( t )  is given by 

hsry (  t )  = ~ B , ( m ) h  ( t )  +- 772p1p2 

Thus we have 

{:= P3~,.;l(-x)Al(t)al(-x) dx. (3.10) 
Dl I , ] =  I 

h s r y ( f ) =  772~l(a) ~ x P [ - ~ ( P , +  V I +  v z ) t I  

+- r 1 2 p 1 p 2  v , ~ $ [ 2 ( p ~ +  v,+ v 2 ) ] A l ( f )  
Dl [,]=I  

(3.11) 

where v, = p3p,, j = 1,2,3.  
The expression for h S r y ( t )  is explicit once we determine T$. Making use of the 

semi-Markov nature of the process and observing that the sojourn time distributions 
are exponential in nature we have 

(3.12) 

with the initial condition 

(3.14) 
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Solving the above equations (3.12) and (3.13) by Laplace transform we have 

(3.15) 

where s = 2(&+ v1 + v2)  and D2 = 9(p2+ vl + v ~ ) ~ +  p2vl.  Using these rf we find that 
h s t y ( t )  is now given by 

(3.16) 

- 33p2v3v: - 3 6 ~ :  ~ 2 ~ 3  - 36vl ~ i . 3  - 9piv3 

- 12v:v3 - 12v~v3)]}/[8D~D2( p2+ v l  + v 2 ) ( A  + p2 + v1 + v 2 ) ]  

+ [ V 2 p 2 p 3  exp[-(P2+ v l +  v 2 ) t I  cos($t)(p2+ v l +  4 
x (4vl  v3p2 + 3 v2v3p2+ 3 vyv3 + 6v1 ~ 2 ~ 3  

+ 3 v: v3 - v:p2 - 4 v l  v2p2-p: v1 - 3 v:p2 - 3 v2pi)]/  (DfD2) 

+ {2p$3v1@2+ V I  + v2)[v3(3p2+2vl +2v2) + v2@2-3(h + v2+ p2)'1 
xexp[-(p2+ v,+ v,)t sin(frt)}(rD:D,). 

If at this stage we set v I  = v2 = A, v3 = 1 lA/3, p2 = 2&/3 we find that the coefficient 
of sinTt/2 in (3.16) vanishes and W, the measure of bunching which can also be 
defined as h,,(O)/h,,,(co) (see, for example, Srinivasan 1988a) now takes the value 
1.8743; besides, the expression on the right-hand side considerably simplifies and 
resembles the stationary value of the product density of degree two of the detection 
process of photons resulting from an amplitude mixture of coherent and chaotic beams 
of light. We will return to this aspect in the next section and show that the coefficients 
do really correspond to those characteristics of the mixture, provided the parameters 
are chosen appropriately. In the next section we will pursue this point and identify 
the intensity correlation. 
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4. A model of cavity radiation and detection 

Cavity radiation and its detection has been studied from many points of view. Shimoda 
et a1 (1957) essentially viewed the radiation as an assembly of photons arising from 
a population process with birth, death and immigration. Scully and Lamb (1966, 1967) 
used a fully quantum mechanical approach and dealt with the elements of the density 
matrix. By appropriate coarse-graining and elimination of the atomic coordinates they 
established the validity of the population point process approach. Shepherd (1981) 
and Shepherd and Jakeman (1987) clarified many of the features of the population 
approach and established a correspondence between the population and field para- 
meters. These models have been further improvised by Srinivasan (1988a) who incor- 
porated memory effects and dealt with the non-Markov evolution of the population 
leading to spectra of the resulting radiation that are observed experimentally in different 
contexts. There is a third approach due to Haken (1981) who deals with the equation 
satisfied by the field operators. Haken starts with the Heisenberg equation satisfied 
by the field operators of the system consisting of an atom, field and an appropriate 
bath. The atomic and bath operators are then eliminated and the resulting equation 
is identified to be of Langevin type when suitable approximations are made. 

While population models can be justified on the lines of argument provided earlier 
by Srinivasan and Vasudevan (1987), it may be worthwhile to establish that non-Markov 
evolution essentially arises from the elimination of atomic and bath variables. We 
shall demonstrate this for a simple system consisting of the field and a bath in which 
case we have (see Haken 1981) 

Ho = hw,b'b 

Hs = hwB: B, (bath) 

H,=hZ(g,b'B,+g:B:b). 

W 

W 

The corresponding Heisenberg equations are given by 

d 
- b' = iw,b'+i g:B: 
d t  W 

d 
- B: = iwB: + igwb'. 
d t  

The above equation leads to 

BL( t )= i  lof b'(T)gw e x p [ i w ( t - ~ ) ] d ~ + B L ( O )  exp(iwt) 

d - b'(t) = h o b + -  b + ( r )  c 1g,12 exp[iw(t - 7)] d ~ + i  1 g : B t ( O )  exp(iwt). 
d t  id w W 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

The above equation is the starting point in a series of approximations employed by 
Haken who arrived at a Langevin equation for the field operator b or bf .  We note 
that the last term in (4.7) can be identified to be the inhomogeneous forcing term in 
the Langevin equation while the second term under suitable approximation can be 
identified to be the contribution due to dissipation. If, however, no such drastic 
approximations are made then the second term is essentially a memory dependent 
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term. Herein lies the origin of the non-Markovian nature of the evolution of the 
population of photons. The phase approach used by Srinivasan implicitly makes a 
particular choice of g,. Viewed from this angle the different types of non-Markov 
evolution essentially arise from a different choice of g,. Now we can interpret the 
results obtained in sections 2 and 3 in the context of the population of photons in a 
cavity. The emigration process is nothing other than the process of detection. The 
final results of section 3 relate to the first two moments of the steady-state photon 
population. The quantity A,(co) denotes the mean population (intensity) and BI(m) 
gives the second factorial moment. The quantity $33 itself is the measure of bunching. 
It is clear from the model that there is bunching and the model should correspond to 
thermal photons. To identify the radiation we look at the detection process. From 
the results of section 3 it follows that the average rate of detection can be identified 
as f l (  ) so that 

fl( ) = 7p2p3/2D1. (4.8) 

On the other hand, hs,y( t ) (  t > 0) denotes the stationary intensity correlation at time 
point t separated by t. An examination of the expression hsry( t )  shows that the intensity 
correlation consists of sine and cosine terms. It is possible by a choice of the parameters 
of the population evolution process to eliminate the sine term so that the intensity 
correlation looks like the one corresponding to the radiation obtained by the amplitude 
mixing of thermal and coherent light. To emphasise this point further we have chosen 
the parameters in such a way that the intensities of the coherent and chaotic parts can 
be identified. If we now choose the parameters 

~ 3 = ( 6 ~ 1 + 5 ~ , ) / 3  (4.9) 

and 

we have 

(4.11) 
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(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

We have checked the feasibility of the above relations in the sense that physically 
meaningful values of the parameters do exist and satisfy the above constraints. 
Although the expressions (4.16), (4.21), (4.19) and (4.24) look very compact, the choice 
of the parameters is by no means trivial since constraints like (4.15) and (4.18) have 
to be imposed. This particular situation is due to the fact that we laid more emphasis 
on the feasibility of the choice. However we can proceed as follows and obtain a fairly 
tractable form for f& and ice. Instead of imposing the constraint (4.9) and (4.10) we 
first make the coefficient of sin Tt/2 to vanish by a direct choice of v3: 

v3 = [3 ( vi + v2 + /32  - v2/321/ (3 /32 + 2 vi 2 v2). (4.25) 

We then further set vl = v2 = / I2  = v (say). We note that P I  has already been fixed in 
arriving at the expressions for the moments A,( t ) ,  A,( t )  and A3( t )  (see (2.21), (2.24) 
and (2.26)). Finally we choose A = kv. With this choice of parameters h, ,y ( t )  as given 
by (4.11) reduces to the form (4.12) provided k satisfies (4.15). On reduction it was 
found that k satisfies a second-degree equation, one of whose roots is 6.32. So with 
this choice of k and the usual understanding that 7 = 1 we get fch = 4.949 8182 and 

fc, = 0.1 14 5421. 

The coherent component ic, arises essentially due to the situation that the state of 
immigration makes a re-entry to state 3 at a rate equal to v3 = 26u/7 and it is this that 
is responsible for Poisson-like emissions. It is also to be specially noted that, if v 1  and 
v2 were to be equal to zero, then the resulting stream would be thermal in nature. An 
appropriate choice of vl and v2 leads to the persistence of the coherent component. 
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The model we have discussed is the most general one when the centre frequencies 
of the coherent and chaotic beams are distinct. It is possible to discuss a simpler 
situation when the two frequencies coincide, in which case cos Tr/2 occurring in (4.11) 
becomes unity. This can be achieved by setting v I  = 0. In fact, if we set v ,  = 0 in (2.12) 
and (2.13) phase 1 automatically gets eliminated since it is essentially a transient one. 
Thus it is sufficient if we consider a two-phase model of immigration. Arguments 
similar to those in section 2 lead to the following differential equations for the generating 
functions: 

ag,(z, t ) / a t =  -pg,(z, t ) + ~ g , + , ( z ,  ~ ) + F + V  i = 1 , 2 , .  . . , n - 1 (4.26) 

(4.27) 

gi(z, 0) = z i = 1,2, . . . , n (4.28) 

and 

aG,(z, ? ) / a t  = -a ,G,(z ,  t ) + a I G 2 ( z ,  t )  (4.29) 

aG2(z, ? ) / a t  = -a2G2(z9 t)+[viGi(z,  t ) +  v2G2(~, t)lgi(z, 2 )  (4.30) 

where v, = a,p , ,  i = 1,2,  with the initial condition 

G,(z, 0) = 1 i = l , 2 .  (4.31) 

Explicit solutions for G,( i = 1,2) are not possible but their moments can be obtained. 

4.1.  Moments of the population 

Using the same notation as in section 2 we have the following differential equations 
for A, and  Bj(j = 1,2)  as 

( d / d t ) A , ( t )  = - a , A , ( f ) + a , A , ( t )  (4.32) 

(d/dt)A,( f = - vi A2( 2 )  + vi Ai ( t )  + ( vi + ~ 2 )  ai ( t )  (4.33) 

and 

(d /d t )B i ( t )  =-a iBi ( t )+a lBz( t )  (4.34) 

(d/dt)B,( t )  = - v l B 2 (  t )  + vIBI(  t ) +  ( v1 + v , ) b , ( t )  +2L(t)  (4.35) 

with 

Aj(0) = B,(O) = 0. (4.36) 

The Laplace transforms solution of the A,( j = 1,2)  are 

A:(s)= ~ , c T ~ / s ( s + / L  + v ) ( s +  + V I )  (4.37) 

AT(s )=  a z ( s + a , ) / s ( s + ~ + ~ ) ( s + a l +  vl).  (4.38) 

O n  inversion and  making the choice p + 7 = 2(a l  + v,), we get 

A , (  t )  = a l a 2 / (  a ,  + v,)’{4 - exp[ -( a ,  + v,)t] +; exp[ -2( a I  + v,) r }  (4.39) 

(4.40) A 2 ( ? ) =  a 2 / ( a , +   fa,+ v 1  exp[- (a ,+  v l ) t ] - f ( a , + 2 v l )  exp[-2(a l+  vl)?].  
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Similarly the Laplace transform solution of the Bj are given by 

BT( s )  = a ,  a2bT( s ) / s (  s + a ,  + v I )  + 2a, L*( s ) / s (  s + a ,  + v l )  

BT(s)  = a 2 ( s +  a , ) b f ( s ) / s ( s +  a,+ v, )+2(s+  a I ) L * ( s ) / s ( s + a l +  v l )  

where 

(4.41) 

(4.42) 

L * ( s )  = v,AT(s + 2 a l  + 2v,) + v2AT(s + 2 a l  +2v1) 

bT(0)=h2/2(a l+  v , ) ( p 2 - A 2 )  (4.43) 

ai(t)  = exp[-2(a, + v l ) t ]  

and the steady-state factorial moments are given by 

i = 1,2 , .  . . , n 

(4.44) 

A , ( ~ ) = A 2 ( ~ ) = a I a 2 / 2 ( a 1 + v 1 ) 2 .  (4.45) 

Following the arguments similar to those in section 3 we obtain the following results: 

f l ( t )  = a  constant = 77a,a2/2(a, + vI) '  

h ~ ( t ) = ~ a , ( t ) = ~  exp[-2(al+vl) t ]  

(4.46) 

(4.47) 

(4.48) 

where vj = a 2 p j ,  j = 1,2. An explicit solution for hX,,( t )  is obtained once we determine 
T;. Proceeding as in section 3, we finally obtain 

4.2. Choice Z 

If the parameters satisfy the following condition: 

we have 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

(4.54) 
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Further, if we impose the additional condition: 

~ l ( w a l ) = & ~ l ~ 2  

we can substitute for v2 to obtain a simplified expression for fco: 

4.3. Choice II 

Further, if we impose the additional condition: 

vl( ~ 2 -  ~ ~ , ) = 3 a , ~ ~ 2 / 8  

we can substitute for u2 to obtain a simplified expression for fco: 

(4.55) 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

The above relations are feasible, in the sense that physically meaningful values of the 
parameters do exist satisfying the above conditions. We can proceed on lines very 
similar to those leading to (4.11)-(4.24) and establish the feasibility for general values 
of the parameters. However, by taking the following specific choice of parameters: 
cyI  = a, v l  = ma, A = ka we find that (4.56) leads to 

v2=29ma/(24m-5)  

a2 = [24m(m + l)a]/(24m - 5)  
and the parameter k gets determined by the constraint (4.53). Thus rch  and rc0 are 
given by 

Fch = 2 m / [ ( m  + 1)(24m - 5 ) ]  

fco=10m/[(m+1)(24m-5)] .  

The constraint (4.56) really fixes the ratio of r c h  to fco. In fact we can make this ratio 
arbitrary by dropping this constraint which was introduced mainly to simplify the 
expressions which are rather unwieldy. Thus we can satisfactorily conclude that a 
special case of the model leads to a heterodyne statistics with respect to the distribution 
function obtained. 
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5. Multiplicity distribution in high-energy collision 

We finally bring out the relevance of the population models to the problem of 
determination of multiplicity distribution in high-energy collisions and, in particular, 
in colliding-beam experiments. The problem of multiplicity distribution has been 
approached from many angles; however, we restrict our attention to the class of models 
that are inspired by thermal light model, particularly by Carruthers and Shih (1987) 
on the one hand and Giovannini and Van Hove (1986) on the other (see also Srinivasan 
and Vasudevan 1988, Srinivasan 1988b, Giovannini 1979). There are many surveys 
now available on this topic (see, for example, Sarcevic 1987, Hwa 1988). To get a 
proper orientation we first discuss the relevance of the Shepherd (1981) model of cavity 
radiation and identify the population parameters. In the Carruthers and Shih 
(1987) model the equations are generally written for the probability mass function 
of the gluons. If we now use the notation g(z, t )  and G(z, t )  in the place of 
gi(z, t ) ( i  = 1,2, .  . . , n )  and Gj(z, t ) ( j  = 1,2, 3) in section 2 the equations which can now 
be interpreted to be the corresponding generating function of the number of gluons take 
the simple form 

We can effect further simplification by setting 7 = 0 since we are not considering the 
detection problem. In the Carruthers and Shih (1987) model the population parameters 
A, p and v are given by the following choice: 

A = Aon 

v = Aoiik 

p = A o f i + k .  

This particular choice is eminently reasonable since the main idea is to arrive at the 
gluon distribution which will ultimately represent the particle multiplicity distribution. 
The parameter ii is chosen so as to provide agreement with the mean multiplicity of 
the particle distribution. We will not go into the detailed argument justifying the above 
choice since it has already been discussed in the literature (Sarcevic 1987, Carruthers 
and Shih 1987). The parameter k can be identified to be the number of clans introduced 
by Giovannini and Van Hove who have visualised the quark effect through the media 
of clans, each of which gives rise to a Poisson sequence of gluons which in turn generate 
a cascade. However the population model as put forward by Shepherd (1981) and 
summarised through (5.1) and (5.2) brings out the dynamics of the hard collision 
process; while (5.1) describes the hard process evolution through gluon multiplication, 
( 5 . 2 )  describes the contribution from the gluon due to quark bremsstrahlung since the 
parameter k can be interpreted to be the intensity of the Poisson process of gluon 
emission by quarks during the process of hard collision. It is, of course, well known 
that such a model describes essentially a population with thermal characteristics. 
However it has been found that the particle multiplicity distribution also has characteris- 
tics similar to those of the stream obtained by amplitude mixing of coherent and 
chaotic beams of light (see, for example, Fowler et a1 1988). It is in this context that 
the population model discussed in sections 2-4 becomes relevant to the description of 
particle multiplicity distributions. In particular, the properties relating to rapidity 
scaling of multiplicity distribution discussed by Fowler et a1 (1988) easily follow from 
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the multiphase model of section 2. It is to be noted that by a proper choice of parameters 
the ratio of the strength of the chaotic to coherent field can be chosen to be equal to 
unity leading to forward-backward symmetry in rapidity distribution of the particles. 
It is also to be noted that the multiphase model can also lead to antibunching of the 
population. Thus the population model enables us to arrive at a dynamical interpreta- 
tion of the particle multiplicity distributions that are generally derived from other 
considerations. 

6. Summary and conclusion 

We have analysed in this paper an age-dependent model of population growth. Age 
dependence itself is brought out by an evolution through phases whose durations form 
a family of independent non-negative random variables. This enables us to model the 
system by a simple differential equation. The moment structure of the population 
enable us to make useful inferences regarding the correlation properties of the popula- 
tion. Admittedly the population model was mainly inspired by cavity radiation and 
detection. In particular, an explicit expression is provided for the second-order intensity 
correlation which has the structure of that for the amplitude mixing of coherent and 
chaotic light. We also establish the relevance of this model to the thermal models that 
have been proposed for the study of multiplicity distribution of particles produced in 
high-energy collision. Such an identification enables us to throw new light on the 
dynamical interpretation of clan and thermal models. For instance, the forward- 
backward symmetry in the rapidity distribution of the particles essentially arises from 
the multiphase evolution of the immigration process. Thus we can infer that, in order 
to account for the experimentally observed forward-backward symmetry in rapidity 
distribution, a simple clan model involving Poisson emission of gluons as postulated 
by Giovannini and Van Hove may not be sufficient. Apparently the emissions are a 
little delayed and the delay can be accommodated within the framework of the phase 
model. The phase model by itself is viable and it is possible to include features like 
antibunching in which case it may be possible to accommodate the production of 
baryons as well. 
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